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We theoretically investigate the influence of losses on the wave-particle duality in a Mach-Zehnder
interferometer. Balanced losses (equal loss on the two paths) have no effect on the visibility and predictability
(also the duality relation), while unbalanced losses do have influence on them. If the unbalanced losses occur
inside the interferometer, the losses have an effect on both the visibility and predictability, while the losses have
no effect on the duality relation. If the unbalanced losses occur after the interferometer, the losses have no effect
on the visibility, but do have an effect on the predictability (also the wave-particle duality), which can lead to a
result that the duality relation exceeds 1, P 2 + V 2 > 1. The influence of losses can be eliminated by exchanging
the two detectors or the two inputs (one photon and the vacuum) of the interferometer and then averaging the
two results. Consequently, we have the visibility, predictability, and duality relation P 2 + V 2 � 1 independent
of the unbalanced losses. The obtained P and V for the unbalanced losses in the two paths do not represent the
original predictability and visibility, and the result of P 2

D + V 2
D > 1 does not mean the “violation” of the original

duality.

DOI: 10.1103/PhysRevA.89.042103 PACS number(s): 03.65.Ta, 42.50.Xa, 07.60.Ly

I. INTRODUCTION

In 1928, Bohr proposed the important principle of comple-
mentarity [1], which lies at the heart of quantum mechanics.
This complementarity emphasizes that the quantum systems
possess properties that are equally real but mutually exclu-
sive [2,3], such as the wave-particle duality. One can observe
wavelike or particlelike behavior of the particle through
different measuring devices. The earlier discussion on the
complementarity was based on Young’s double-slit experiment
with a light beam which contains many photons [4,5]. In 1979,
Wootters and Zurek quantified the wave-particle duality [6].
The first inequality, P 2 + V 2 � 1, with P the predictability
of the particle (photon) passing along the two paths and V

the visibility of the interference pattern behind the standard
Mach-Zehnder interferometer (MZI), is theoretically derived
by Jaeger et al. [7] and Englert [8], which can be used to
quantify the wave-particle duality for a single particle. In
Ref. [8], the second duality inequality D2 + V 2 � 1 for a
single particle is introduced, when the interferometer (MZI)
is supplemented with a which-way detector (WWD). In this
inequality, the distinguishability D represents a posteriori
which-way knowledge after the particle interacted with the
WWD, and V is the fringe visibility. Here we would emphasize
that the definitions of the two inequalities are different.
The predictability is the difference between the probabilities
(w1 and w2) that the particle takes one way and the other,
P = |w1 − w2|. For the distinguishability, the which-way
information is stored in the which-way detector (WWD)
and can be read out from the detector. After the photon’s
interaction with the which-way detector, we can get the final
detector state ρD . Assuming |W 〉 is an eigenvector of the
detector, the probabilities of photons following path 1 and
path 2 are 〈W | ρ(1)

D |W 〉 and 〈W | ρ(2)
D |W 〉. If 〈W | ρ(1)

D |W 〉 >

〈W | ρ(2)
D |W 〉 (or 〈W | ρ(2)

D |W 〉 > 〈W | ρ(1)
D |W 〉), we can best

guess the particle goes through path 1 (or path 2). The
“likelihood for guessing the right way” is given by L =∑

W max{〈W | ρ(1)
D |W 〉 , 〈W | ρ(2)

D |W 〉}. If we can find the
optimized eigenvector |W 〉, which results in the largest value
of L, Lmax= 1

2 (1 + D), the distinguishability is quantified as
D = 2Lmax − 1 [8]. Both predictability and distinguishability
are well defined in Ref. [8]. The experiments reported in
Refs. [9,10] demonstrate the second inequality and many
experiments [11–17] verify the first inequality of the duality.
The inequality of the duality is valid even in a Wheeler’s
delayed-choice experiment [18,19] and has been confirmed
experimentally for a single particle in 2007 and 2008 [20,21].
However, the “distinguishability” defined in Refs. [20,21]
is actually different from the distinguishability defined in
Ref. [8]. In order to distinguish these two different defini-
tions of distinguishability, we call the distinguishability in
Refs. [20,21] “which-way knowledge.”

Recently, a new optical device called the quantum beam
splitter (QBS) [22,23] is proposed by adding other degrees
of freedom of the single particle, such as the polarization of
a photon. It is theoretically declaimed that the particlelike
and wavelike behaviors of the particle can be tested at the
same time. The experiments with the QBS were reported in
Refs. [24–26] and the wave-particle duality is still satisfied.
However, the simultaneous detection on the particle and wave
behaviors is not achieved. Recently in Ref. [27] (a single
photon with polarizations as the two additional degrees of
freedom), an interesting result, P 2 + V 2 > 1, was reported,
where it was declaimed that this result is due to the interference
between the particle and wave behaviors. In Ref. [27], one
certain base (the polarizer set at an angle β) for the QBS is
chosen for the detection; that is to say, the photon is projected
into this base, while the photons in the orthogonal base

1050-2947/2014/89(4)/042103(7) 042103-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.042103


JIA, HUANG, ZHANG, AND ZHU PHYSICAL REVIEW A 89, 042103 (2014)

FIG. 1. Losses inside the Mach-Zehnder interferometer. A single
input particle is split by a variable beam splitter (VBS) with adjustable
reflectivity R. The loss in the interferometer is modeled by the beam
splitter, with reflectivity R1 (R2). PZT stands for the piezoelectric
transducer and M stands for a normal mirror. Then the particle is
recombined with a 50:50 beam splitter (BS) and detected by detectors
1 (D1) and 2 (D2). a,b,a′ and b′ stand for the path.

(β + π
2 ) are not recorded, which is equivalent to the photon

loss.
In the above works, the influence of losses on the wave-

particle duality is not discussed. However, losses are inevitable
in any experiment, and the study on the losses is necessary. In
this paper, we studied the duality relation for a single particle
in the standard MZI setup with losses. We consider two kinds
of losses, one inside the MZI, and the other behind the MZI but
before the detection in Secs. II and III, respectively. Section IV
is a summary. In the Appendix, we discuss the influence of
losses on the duality used in Ref. [21].

II. LOSSES INSIDE THE INTERFEROMETER

We discuss the influence of losses on the wave-particle
duality in the standard MZI (see Fig. 1) and analyze the first
inequality, following Ref. [8]. A single input particle is split
by a variable beam splitter (VBS) with adjustable reflectivity
R. In order to simulate the losses, we use two beam splitters
(BSs) with reflectivities R1 and R2 (0 � R1,R2< 1) in the two
paths, respectively. The piezoelectric transducer (PZT) is used
to adjust the relative phase between the two paths. At last the
particle is recombined with a 50:50 beam splitter (BS) and
detected by detectors 1 (D1) and 2 (D2), and a (or b) indicates
the path where the loss occurs. First we assume that both
detectors are perfect; the situation with the imperfect detectors
will be discussed in the following.

The wavelike behavior can be described by the visibility of
the interference fringe pattern after the last 50:50 BS [8],

V = pmax − pmin

pmax + pmin
, (1)

where p is the probability that the particle follows path a′ (b′)
and is detected on detector 1 (2). The maximum (max) and
minimum (min) value are obtained by scanning the phase φ.

For this device with losses inside the interferometer, the
final state after the BS is

|ψf 1〉 = A1|1〉a′ + A2|1〉b′ + A3|1〉a + A4|1〉b, (2)

with

A1 =
√

(1 − R)(1 − R1)

2
eiφ −

√
R(1 − R2)

2
;

A2 =
√

(1 − R)(1 − R1)

2
eiφ +

√
R(1 − R2)

2
;

A3 =
√

R1(1 − R); A4 =
√

RR2.

The probability p1 that the particle is detected on detector 1 is

p1 = a′ 〈1 |ψf 1〉〈ψf 1 | 1〉a′ = |A1|2. (3)

The interference pattern can be observed by scanning φ.
According to Eq. (1), the a priori fringe visibility is

V = 2
√

R(1 − R)(1 − R1)(1 − R2)

(1 − R)(1 − R1) + R(1 − R2)
. (4)

We can also obtain the same visibility if we detect the particle
by detector 2.

For the predictability, we need to remove the last BS and
detect the probabilities of particle on paths a′ and b′. The
difference between the two probabilities denotes the which-
way information,

P = |w1 − w2|
w1 + w2

, (5)

where w1 and w2 stand for the probabilities of the particle
detected on detectors 1 and 2, respectively. The final state
after removing the BS becomes

|ψf 2〉 = B1 |1〉a′ + B2 |1〉b′ + B3 |1〉a + B4 |1〉b , (6)

with B1 = eiφ
√

(1 − R)(1 − R1); B2 = √
R(1 − R2);

B3 = √
(1 − R)R1; B4 = √

RR2.

The probabilities for taking either one of the two ways are
w1 = |B1|2 and w2 = |B2|2. They are detected on detectors 1
and 2, respectively. According to Eq. (5), the predictability of
the ways through the interferometer is

P = |(1 − R)(1 − R1) − R(1 − R2)|
(1 − R)(1 − R1) + R(1 − R2)

. (7)

It is easy to verify the wave-particle duality relation:

P 2 + V 2 = 1. (8)

It is clear that for the losses inside the interferometer, the
probabilities of particles passing through the two paths are
reduced by the amount of (1 − R1,2), which can be found in
Eqs. (4) and (7). Therefore, the unbalanced losses inside the
MZI will influence the visibility and predictability. In Fig. 2,
we plot P 2 and V 2 versus R for R1 = 0.4 and R2 = 0.6,
where we also plot the corresponding curves without losses.
However, the losses have no influence on the wave-particle
duality relation for the device with losses inside the MZI
(before the last BS), as shown in Eq. (8).

III. LOSSES AFTER THE INTERFEROMETER

After the particle passing through the second BS in the MZI
(see Fig. 3), photon loss may be caused by the paths from MZI
to the detectors or the detectors themselves. These losses can
still be simulated by two BSs, as depicted in Fig. 3. The loss
rate is R′

1 (R′
2) with 0 � R′

1(R′
2) < 1.
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FIG. 2. (Color online) P 2 and V 2 versus R for R1 = 0.4 and
R2 = 0.6. The red and blue lines stand for P 2 and V 2, respectively.
The green solid line and black dotted line correspond to P 2 + V 2

with and without losses, respectively.

Similarly, the visibility is expressed as

VD = p′
max − p′

min

p′
max + p′

min

, (9)

where p′ is the probability of particles detected on detector 1
or 2. The final state after the BSs of R′

1 and R′
2 is

|ψ ′
f 1〉 = A′

1 |1〉a′ + A′
2 |1〉b′ + A′

3 |1〉a + A′
4 |1〉b , (10)

with

A′
1 =

√
1 − R′

1

2
(eiφ

√
1 − R −

√
R);

A′
2 =

√
1 − R′

2

2
(eiφ

√
1 − R +

√
R);

A′
3 =

√
R′

1

2
(eiφ

√
1 − R −

√
R);

A′
4 =

√
R′

2

2
(eiφ

√
1 − R +

√
R).

The probability p′
1 that the particle is detected on detector 1 is

p′
1 = a′ 〈1|ψ ′

f 1〉〈ψ ′
f 1|1〉a′ = |A′

1|2. (11)

By adjusting the relative phase φ, the maximum and
minimum values can be obtained. According to Eq. (9), the
fringe visibility is

VD = 2
√

R(1 − R). (12)

We can obtain the same result if we detect the particle by
detector 2.

FIG. 3. Losses after Mach-Zehnder interferometer. The loss rate
is R′

1 (R′
2). The other elements are same as the case in Fig. 1.

The visibility is calculated with Eq. (9), which is determined
by the maximizing and minimizing values of the counting
rates, and the weight of R′

1 (R′
2) can be eliminated during the

computational process. Consequently, the losses outside the
MZI (R′

1 and R′
2) has no influence on the visibility as shown

in Eq. (12).
For the predictability, it is given by

PD = |w′
1 − w′

2|
w′

1 + w′
2

, (13)

which is obtained by removing the last 50:50 BS, where w′
1

and w′
2 stand for the probabilities of the particles detected on

detectors 1 and 2, respectively. The final state becomes

|ψ ′
f 2〉 = B ′

1|1〉a′ + B ′
2|1〉b′ + B ′

3|1〉a + B ′
4|1〉b, (14)

with

B ′
1 = eiφ

√
(1 − R)(1 − R′

1); B ′
2 =

√
R(1 − R′

2);

B ′
3 = eiφ

√
(1 − R)R′

1; B ′
4 =

√
RR′

2.

The probabilities for particles taking either one of the two
paths (paths a′ and b′) and being detected, respectively, on
detectors 1 and 2 are w′

1 = |B ′
1|2 and w′

2 = |B ′
2|2. According

to Eq. (13), the predictability is

PD = |(1 − R)(1 − R′
1) − R(1 − R′

2)|
(1 − R)(1 − R′

1) + R(1 − R′
2)

, (15)

which depends on R′
1 and R′

2. As the detecting probabilities of
the two detectors depend separately on the losses R′

1 and R′
2,

the predictability depends on the losses. Thus the wave-particle
duality relation obtained from the two detectors is

P 2
D + V 2

D =
[ |(1 − R)(1 − R′

1) − R(1 − R′
2)|

(1 − R)(1 − R′
1) + R(1 − R′

2)

]2

+ 4R(1 − R). (16)

In order to observe the influence of losses on duality relation
clearly, we plot P 2

D + V 2
D as a function of R′

1 and R′
2 for

different R (the reflectivity of the VBS) in Fig. 4. Note that
the values of P 2

D + V 2
D for R and 1 − R are symmetrical

with respect to the diagonal line of the figures. It is clear
that P 2

D + V 2
D can be larger than 1 for some certain values

of R′
1 and R′

2. For example, when the reflectivity of the
VBS is R = 0.5 and the loss rates are R′

1 = 0.2, R′
2 = 0.8,

we have P 2
D + V 2

D = 1.36. For R′
1 = 0.4 and R′

2 = 0.6, we
plot P 2

D + V 2
D as a function of R in Fig. 5, where we have

P 2
D + V 2

D > 1 for some certain values of R. Please note
that P 2

D + V 2
D > 1 can be eliminated with balanced losses

(R′
1 = R′

2), as we have PD = |1 − 2R|, VD = 2
√

R(1 − R),
and P 2

D + V 2
D = 1 from Eq. (16).

When unbalanced loss occurs, the obtained probability for
calculating PD is different from the probabilities without the
losses. That is to say, the PD obtained with loss is not the
original P defined in Ref. [8]. It is obvious that the unbalanced
losses affect the guess on which path the photon takes, which
makes the determination on the predictability different from
that without losses. Although we did not make calculations
for the situation of a quantum beam splitter in [27], the losses
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FIG. 4. (Color online) P 2
D + V 2

D as a function of R′
1 and R′

2. (a)–(e) correspond to the cases with R = 0.1 − 0.5. P 2
D + V 2

D can be larger
than 1 for some certain values of R′

1 and R′
2.

discussed here may provide a reference on the experimental
result in Ref. [27].

Next let us consider how to correct the result of P 2
D +

V 2
D > 1 obtaining the original P 2 + V 2 � 1 defined in [8]. As

FIG. 5. (Color online) The red solid line describes P 2
D + V 2

D as a
function of R for R′

1 = 0.4 and R′
2 = 0.6. The dashed line stands for

the maximum standard line of duality relation, P 2 + V 2 = 1.

mentioned above, it can be eliminated by the balanced losses.
If the losses are caused by the detectors, we can exchange
the two detectors and detect the particle probabilities on the
two detectors again, then take the average probabilities as the
final result. Since the losses after the MZI have no effect on
the visibility, we only need to average the predictabilities. The
particle probabilities on detectors 1 and 2 after exchanging the
two detectors are

w′
1e = (1 − R)(1 − R′

2), w′
2e = R(1 − R′

1). (17)

The averages of the particle probabilities detected on
detectors 1 and 2 are

w̄1 = w′
1 + w′

1e

2
= 1

2
(1 − R)

[
(1 − R′

1) + (1 − R′
2)

]
,

w̄2 = w′
2 + w′

2e

2
= 1

2
R

[
(1 − R′

1) + (1 − R′
2)

]
. (18)
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By using the average probabilities w̄1 and w̄2, the pre-
dictability becomes

PD = |w̄1 − w̄2|
w̄1 + w̄2

= |1 − 2R| . (19)

The ordinary wave-particle duality relation P 2
D + V 2

D = 1
is recovered. By this method, we can eliminate the influence
of the losses on the wave-particle duality relation. If the losses
are caused by the paths between the MZI and the detectors,
we exchange the input paths and the subscripts of the two
detectors. We detect the particle probabilities on the two
detectors again, and regard the average probabilities as the
final result. For the predictability, the particle probabilities
on detectors 1 and 2 after removing the last 50:50 BS and
exchanging the input paths are

w′′
1e = (1 − R)(1 − R′

2),w′′
2e = R(1 − R′

1). (20)

The averages of the particle probabilities detected on
detectors 1 and 2 are

w̄′
1 = w′

1 + w′′
1e

2
= 1

2
(1 − R)[(1 − R′

1) + (1 − R′
2)],

w̄′
2 = w′

2 + w′′
2e

2
= 1

2
R[(1 − R′

1) + (1 − R′
2)]. (21)

The predictability by using the average probabilities w̄′
1 and

w̄′
2 becomes

PD = |w̄′
1 − w̄′

2|
w̄′

1 + w̄′
2

= |1 − 2R|. (22)

Consequently, the influence of losses caused by the paths
from MZI to the detectors can be eliminated. The ordinary
wave-particle duality relation P 2

D + V 2
D = 1 is recovered.

IV. CONCLUSION

We have studied the influence of losses on the duality
relation in a standard MZI setup and discussed how to eliminate
it. If the losses appear inside the MZI, it takes effect on
the visibility and predictability, but has no influence on the
wave-particle duality relation. If the losses appear behind the
MZI, the losses have a great influence on the wave-particle
duality relation. Unbalanced losses after the MZI can lead to
P 2

D + V 2
D > 1 (the “violation” of the ordinary duality relation).

The obtained PD and VD for the unbalanced losses in the
two paths do not represent the original predictability and
visibility defined in Ref. [8]. The influence of losses on the
visibility, predictability, and duality relation (P 2

D + V 2
D > 1)

can be eliminated by exchanging the two detectors or the two
inputs (one photon and the vacuum) of the interferometer and
then averaging the two results.
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APPENDIX: THE INFLUENCE OF LOSSES ON THE
DUALITY FOR THE DEVICE IN REF. [21]

The device in Ref. [21] is the same as that which we
discussed above, except the locations of VBS and 50:50BS
are exchanged. If there is no loss, the dualities for these two
devices are the same [11]. But if we consider the losses, the
results for these two devices are different.

In Ref. [21], the definition of visibility is the same as that
above, and the which-way knowledge is defined as

K = K1 + K2

2
, (A1)

K1 = |p21 − p22|
p21 + p22

∣∣∣∣
path 1 blocked

,

(A2)

K2 = |p11 − p12|
p11 + p12

∣∣∣∣
path 2 blocked

,

where pij is the probability that the particle follows path i (the
other path is blocked) and is detected on detector j .

1. Losses inside the MZI

First, we analyze the case that the losses are inside the MZI
(see Fig. 6). The final state before the detectors is

|ψf 〉=C1|1〉a′ + C2|1〉b′ + C3|1〉a+C4|1〉b, (A3)

with

C1 = eiϕ

√
(1 − R)(1 − R1)

2
−

√
R(1 − R2)

2
;

C2 = eiϕ

√
R(1 − R1)

2
+

√
(1 − R)(1 − R2)

2
;

C3 =
√

R1

2
; C4 =

√
R2

2
.

The interference pattern can be observed by scanning φ.
According to Eq. (1), the visibilities detected by detectors 1
and 2 are

V1 = 2
√

R(1 − R)(1 − R1)(1 − R2)

(1 − R)(1 − R1) + R(1 − R2)
, (A4)

V2 = 2
√

R(1 − R)(1 − R1)(1 − R2)

R(1 − R1) + (1 − R)(1 − R2)
, (A5)

FIG. 6. Losses inside the MZI. This device is same as Fig. 1
except that the VBS and BS are switched.
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FIG. 7. (Color online) K2 and V 2
1(2) versus R for R1 = 0.4 and

R2 = 0.6.

respectively. For the which-way knowledge, we need to block
one path according to Ref. [21]. The final state becomes

|ψf 1〉 =
√

1 − R2(
√

1 − R|1〉b′ −
√

R|1〉a′ )

+
√

R2|1〉b (path 1 blocked), (A6)

|ψf 2〉 = eiϕ
√

1 − R1(
√

1 − R|1〉a′ +
√

R|1〉b′ )

+
√

R1|1〉a (path 2 blocked). (A7)

According to Eqs. (A1) and (A2), the which-way knowl-
edge is

K = K1 + K2

2
= |1 − 2R|, (A8)

with

K1 = K2 = |1 − 2R|.
The influence of losses can be eliminated by balancing the

losses. Otherwise, the losses have an effect on the visibility
and which-way knowledge and the duality K2 + V 2 may be
bigger than 1. For R1 = 0.4 and R2 = 0.6, we plot K2 + V 2

1(2)

as a function of R in Fig. 7, where we have K2 + V 2
1(2) > 1 for

some certain values of R.

FIG. 8. Losses after the MZI. This device is the same as Fig. 3
except that the VBS and BS are switched.

2. Losses after the MZI

Similarly, for the case that the losses are outside the MZI
(see Fig. 8), the final state before detectors is

|ψ ′
f 〉=C ′

1|1〉a′ + C ′
2|1〉b′ + C ′

3|1〉a + C ′
4|1〉b, (A9)

with

C ′
1 =

√
1 − R′

1

2
(eiϕ

√
1 − R −

√
R);

C ′
2 =

√
1 − R′

2

2
(eiϕ

√
R + √

1 − R);

C ′
3 =

√
R′

1

2
(eiϕ

√
1 − R −

√
R);

C ′
4 =

√
R′

2

2
(eiϕ

√
R + √

1 − R).

According to Eq. (9), the visibility detected by detectors 1
and 2 are the same:

V ′ = 2
√

R(1 − R). (A10)

For the which-way knowledge, we block one path and the
final states become

|ψ ′
f 1〉 = −

√
R(

√
1 − R′

1|1〉a′ +
√

R′
1|1〉a)

+√
1 − R(

√
1 − R′

2|1〉b′ +
√

R′
2|1〉b)

(path 1 blocked), (A11)

|ψ ′
f 2〉 = eiϕ

√
1 − R(

√
1 − R′

1|1〉a′ +
√

R′
1|1〉a)

+ eiϕ
√

R(
√

1 − R′
2|1〉b′ +

√
R′

2|1〉b)

(path 2 blocked). (A12)

According to Eqs. (A1) and (A2), the which-way knowl-
edge is

K ′ = K ′
1 + K ′

2

2
= 1

2

|R(1 − R′
1) − (1 − R)(1 − R′

2)|
R(1 − R′

1) + (1 − R)(1 − R′
2)

+ 1

2

|(1 − R)(1 − R′
1) − R(1 − R′

2)|
(1 − R)(1 − R′

1) + R(1 − R′
2)

, (A13)

with

K ′
1 = |R(1 − R′

1) − (1 − R)(1 − R′
2)|

R(1 − R′
1) + (1 − R)(1 − R′

2)
,

K ′
2 = |(1 − R)(1 − R′

1) − R(1 − R′
2)|

(1 − R)(1 − R′
1) + R(1 − R′

2)
.

FIG. 9. (Color online) K ′2 and V ′2 versus R for R′
1 = 0.3 and

R′
2 = 0.7.
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We find the unbalanced losses have an effect on the which-
way knowledge as it has influence on guessing which path
the photon takes. The duality K ′2 + V ′2 may be bigger than

1 for the unbalanced losses. For R′
1 = 0.3 and R′

2 = 0.7, we
plot K ′2 + V ′2 as a function of R in Fig. 9, which shows
K ′2 + V ′2 > 1 for some certain values of R.
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